Low-Energy Irradiation Damage in Single-Wall Carbon Nanotubes
نویسنده
چکیده
Single-wall carbon nanotubes (SWCNTs) are one of the most promising materials for future nano-electronics, because of their unique quasi-one-dimensional structures and excellent electric and mechanical properties. They also have very high chemical stability, owing to their robust sp2-bonding carbon network (graphene) with no dangling bonds. Because of the structural robustness, low-energy (typically 10 eV-20 keV) electron and photon irradiation in a vacuum had been generally assumed not to cause damage to SWCNTs when the energy is smaller than the knock-on threshold. In fact, analytical tools that use low-energy electrons or photons, such as scanning electron microscopy (SEM), had been commonly used for characterization of SWCNTs without serious concerns. In 2004, however, we reported that electron irradiation in a SEM caused severe damage (low-energy irradiation damage) in SWCNTs produced by both thermal chemical vapor deposition and laser ablation methods (Suzuki et al., 2004b). Other techniques using lowenergy electrons and vacuum-ultraviolet (VUV) light or soft x-rays (especially highbrilliance synchrotron radiation light), such as low-energy electron microscopy (LEEM) and photoemission spectroscopy, also inevitably damage SWCNTs. Therefore, paying attention to the low-energy irradiation damage is practically important for those who study SWCNTs. For example, when we measure the Raman and photoluminescence (PL) spectra and electric properties and take SEM images of the same SWCNTs, the SEM observations should be done last. Doing the high-resolution SEM observation first would inevitably cause severe damage and tremendously affects the following measurements. The low-energy irradiation damage and its defect characteristics are also physically interesting. In this chapter, we will review the physical and chemical property changes induced by the damage, and the defect properties, which are significantly different from those of other types of damage. We will examine the defect-induced metal-semiconductor transition of the room-temperature electric properties and discuss its mechanism. We will also summarize other types of damage, which are often confused with the low-energy irradiation damage, focusing on the differences between them. Before continuing to the main text, I must briefly explain how I compare spectra obtained form the same SWCNT sample. In many studies of the physical or chemical treatment of SWCNTs and graphene, spectra are often normalized to the maximum peak height. In
منابع مشابه
Investigation of the interaction of carbon dioxide fluid with internal and external single-wall carbon nanotubes by DFT
The effective parameters of (5, 0) and (5, 5) single-wall carbon nanotubes during the interaction with carbon dioxide as sensors are determined. The interaction of carbon dioxide molecules with internal and external walls of the nanotubes is studied using Gaussian 03 coding by density functional theory (DFT) at the B3LYP/6-311G level of theory. CO2 rotation around tube axles vertically and par...
متن کاملSulfur Dioxide Internal and External Adsorption on the Single-Walled Carbon Nanotubes: DFT Study
Density-functional theory is used to investigate sulfur dioxide physisorption inside and outside of single-wall carbon nanotube of (5,0) and (5,5). This study is conducted at B3LYP/6-31G* level of theory. Sulfur dioxide molecule is studied with axis oriented parallel or perpendicular to the nanotube wall. Both internal and external adsorption on nanotubes is increased with the angle of interact...
متن کاملInvestigation of Molecular Selenium Adsorption to the Outer Surface of Single Wall Carbon Nanotubes
In this study the adsorption of selenium molecule (Se2) on the outer surface of zigzag (5,0), (8,0) and (10,0) carbon nanotubes has been investigated. We examined number adsorbed orientations as well as different adsorption sites on nanotubes. The adsorption energies, equilibrium distances, energy differences between the highest occupied molecular orbital (HOMO) and lowest uno...
متن کاملA Theoretical Study of H2S and CO2 Interaction with the Single-Walled Nitrogen Doped Carbon Nanotubes
The physical adsorption of hydrogen sulfide and carbon dioxide gases on the zigzag (5,0) carbon nanotubes doped with nitrogen was investigated through the application of B3LYP/6-31G* at the level of theory on Gaussian 03 software. A variety of stable and high abundance structures of nitrogen doped carbon nanotubes were considered in order to study the interaction between the mentioned gases in ...
متن کاملA Theoretical Study of H2S and CO2 Interaction with the Single-Walled Nitrogen Doped Carbon Nanotubes
The physical adsorption of hydrogen sulfide and carbon dioxide gases on the zigzag (5,0) carbon nanotubes doped with nitrogen was investigated through the application of B3LYP/6-31G* at the level of theory on Gaussian 03 software. A variety of stable and high abundance structures of nitrogen doped carbon nanotubes were considered in order to study the interaction between the mentioned gases in ...
متن کامل